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ABSTRACT  

Background:  While much prior research has focused on identifying the roles of major 

regulatory systems in health risks, the concept of allostatic load (AL) focuses on the 

importance of a more multi-systems view of health risks.  How best to operationalize 

allostatic load, however, remains the subject of some debate. 

Aim:  To test a hypothesized meta-factor model of allostatic load composed of a 

number of biological system factors, and to investigate model invariance across sex and 

ethnicity.   

Subjects & Methods: Biological data from 782 men and women, aged 32-47, from the 

Oakland, CA and Chicago, IL sites of the Coronary Artery Risk Development in Young 

Adults Study (CARDIA) were collected as part of the Year 15 exam in 2000.  These 

include measures of blood pressure, metabolic parameters (glucose, insulin, lipid 

profiles, and waist circumference), markers of inflammation (interleukin-6, C-reactive 

protein, and fibrinogen), heart rate variability, sympathetic nervous system activity (12 hr 

urinary norepinephrine and epinephrine) and hypothalamic-pituitary-adrenal axis activity 

(diurnal salivary free cortisol). 

Results:  A “meta-factor” model of AL as an aggregate measure of six underlying latent 

biological subfactors was found to fit the data, with the meta-factor structure capturing 

84% of variance of all pairwise associations among biological subsystems.   There was 

little evidence of model variance across sex and/or ethnicity.   

Conclusions:  These analyses extend work operationalizing AL as a multi-systems 

index of biological dysregulation, providing initial support for a model of AL as a meta-
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construct of inter-relationships among multiple biological regulatory systems, that varies 

little across sex or ethnicity.    

Word Count=249 

 

CARDIA = Coronary Artery Risk Development in Young Adults Study; AL= Allostatic 

load; HPA = hypothalamic-pituitary adrenocortical; BMI = body mass index; SNS = 

sympathetic nervous system; HRV = heart rate variability; CRP = c-reactive protein; IL-6 

= interleukin 6; HDL-C = high density lipoprotein cholesterol; LDL-C = low density 

lipoprotein cholesterol; RIA = radioimmuno assay; RRV = beat-to-beat heart rate [RR] 

variability; LF = low frequency; HF=high frequency; HR = heart rate; NOR = 

norepinephrine; EPI = epinephrine; SEM = structural equation modeling; Χ2=chi-square; 

CFI = comparative fit index; RMSE = root mean square error of approximation; LM = 

Lagrange multiplier 
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INTRODUCTION   

 Despite an extensive literature linking various major physiological regulatory 

systems to health risks (Barrett-Connor and others 1986; Despres and others 1990; 

Eaton 2005; Forouhi and Sattar 2006; Fried and others 1998; Landsberg 1994; Munck 

and Guyre 1991; Reuben and others 2000; Simon and others 2006; Tsuji and others 

1996), surprisingly little attention has been paid to the health impacts of the co-

occurrence of physiological dysregulation across multiple systems.  The concept of 

allostatic load (AL), first proposed by McEwen & Stellar (McEwen and Stellar 1993) and 

subsequently elaborated by McEwen (McEwen 2003), represents one attempt to 

conceptualize health risks from such a multi-systems perspective. Fundamental to the 

concept of AL is the fact that the body’s physiological regulatory systems are constantly 

adjusting to an ever-changing set of demands and stimuli as we (and our bodies) 

consciously and unconsciously respond to the world around us - a process that has 

been termed allostasis. (Sterling and Ever 1988) Over time, as this process of on-going 

adaptation continues, physiological systems can lose their ability to efficiently and 

effectively adapt (i.e., they begin to exhibit evidence of “wear and tear” or physiological 

dysregulation).  The concept of allostatic load reflects an attempt to conceptualize such 

physiological dysregulation from a multi-systems perspective (i.e., as the cumulative 

physiologic toll or “price” that the body may ultimately pay for its adaptational efforts). 

What distinguishes the concept of AL from other approaches to understanding 

physiological predictors of health risks is its focus on consideration of multiple 

physiological systems (and their attendant dysregulations) and their possible conjoint 

impacts on risks for various health outcomes.  It is this multi-systems focus that sets 
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allostatic load apart from the heretofore more common approach of focusing on risks 

associated with individual systems.  Consistent with the idea that a cumulative, multi-

systems view of biological risks is important to understanding health differentials, 

several studies have found that multiple biological factors, none of which were 

individually significant as predictors of major health events such as heart attacks and/or 

death, do contribute to significantly elevated risks when considered jointly (McEwen 

1998; Schulkin 2004).  Empirical work using various operational definitions of AL has 

also demonstrated that cumulative burdens of dysregulation are associated with 

significantly greater risks for cognitive and physical decline as well as mortality, even 

when individual, component biological measures were not significantly related to 

outcomes (Karlamangla and others 2002; Lynch and others 1996; Seeman and others 

2004).   

 Prior research, however, has operationalized AL in terms of various summative 

indices (Karlamangla and others 2002; Seeman and others 2001).   While useful as 

relatively simple approaches to estimating cumulative levels of physiological 

dysregulation, this work has not  included explicit testing of the concept of allostatic load 

as a higher-order constellation of dysregulations across multiple major regulatory 

systems (e.g., cardiovascular, metabolic, endocrine, immune), with expected clustering 

of dysregulation both within each system (e.g., among various cardiovascular 

indicators) as well as across systems (i.e., as a function of inter-system dependencies).  

The present paper seeks to extend previous research on the measurement of AL 

through use of structural equation modeling to estimate three hypothesized 
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structural/measurement models of AL and to evaluate the fit of a proposed “meta factor” 

model reflecting the shared (cumulative) variance across these systems.   

Data from participants in the Coronary Artery Risk Development in Young Adults 

Study (CARDIA) also provide an opportunity to examine the patterning of these inter-

relationships among various regulatory systems by sex and ethnicity (Whites vs. 

Blacks).  The potential importance of examining sex and ethnic differences is suggested 

by a growing body of evidence for potentially important gender differences in biological 

responses to challenge (Taylor and others 2000), a pattern that could also result in 

differential patterns of dysregulation among physiological regulatory systems.  Similarly, 

in light of known differences in the typical life experiences and challenges faced by 

Whites and Blacks in the US, with our history of social and economic 

disenfranchisement of Blacks, it is possible that the cumulative patterns of AL “wear and 

tear” seen across different regulatory systems will differ between Blacks and Whites.  

Indeed, Geronimus and colleagues (Geronimus and others 2006) have documented 

Black/White differences in overall AL using the nationally-representative NHANES III 

data.  No prior work has directly tested for possible ethnic differences in patterning of 

associations among biological risk factors.  The possibility of such differences is at least 

suggested by a mixed literature pointing to possible Black/White differences in links 

between cardiovascular risk factors and major health outcomes: some studies find 

similar effects of risk factors on coronary disease risks for Whites and Blacks 

(D'Agostino and others 2001; Vaccaro and others 1998)  while others indicate 

differences in the relative impacts of different risk factors (Liao and others 1999; Paultre 

and Mosca 2006).  In contrast to many studies where one or another ethnic group is 
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sampled in only small numbers, the CARDIA sample design provides similar sample 

sizes for Whites and Blacks, allowing for stronger statistical comparisons within and 

between these groups.   

 

METHODS 

CARDIA is a bi-ethnic, prospective, multi-center epidemiological study of the 

evolution of cardiovascular risk beginning in young adulthood.  In 1985-1986, 5115 

black and white men and women, aged 18 to 30 years, were recruited at Birmingham, 

AL; Chicago, IL; Minneapolis, MN; and Oakland, CA, to achieve a balance at each site 

by race (black, white), gender, education (high school degree or less, more than high 

school), and age (18-24 years, 25-30 years) (Cutter and others 1991).  Participants 

were examined at study entry and years 2, 5, 7, 10, and 15 with re-examination rates 

among surviving cohort members of 90.5%, 85.7%, 80.6%, 78.5%, and 73.5%, 

respectively.  Compared with CARDIA subjects who participated in the Year 15 exam, 

those who did not participate were more likely to be African-American, younger, less 

educated and smokers (data not shown).  Site institutional review committee approval 

and informed consent were obtained for each examination.   

At the Year 15 exam, subjects seen at the Oakland, CA and Chicago, IL sites 

(and living within 50 miles of the clinic; N=721 and 615 respectively) were invited to 

participate in a sub-study of cumulative biological risk; 844 (63%) agreed to participate.  

Participation in the sub-study involved a second clinic visit to augment the core CARDIA 

biological measures with additional assessments of heart rate variability, and 

hypothalamic-pituitary-adrenal axis and sympathetic nervous system activity.  At the 
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second clinic visit, participants completed a 30-minute, computer-based assessment of 

heart rate variability (see details below) and received instructions for completion of a 

12hr, over-night urine collection and collection of 6 saliva samples over the course of a 

single day.  There were no significant differences between those subjects participating 

in the ancillary study and those from the Chicago and Oakland sites who did not 

participate in the ancillary study in terms of mean age or the gender distribution of 

subjects.  However, those in the ancillary study were slightly more likely to be black and 

had slightly lower levels of education and income than those who did not participate in 

the ancillary study.  Ancillary study participants who had completed two or more of four 

sets of physiological measurements (blood [as part of core CARDIA protocol], urinary, 

salivary, autonomic) were considered to have sufficient information on components of 

AL to be included in the current analyses (782 of the 844 enrolled [93%]).  

Biological Risk:  Measurements for 18 different biological parameters were available 

for analysis, including measures of metabolism, blood pressure, and inflammation from 

the core CARDIA exam, and measures of heart rate variability [HRV], sympathetic 

nervous system [SNS], and the hypothalamic-pituitary-adrenal [HPA] axis from the 

ancillary study protocol.  Parameters considered as components of our assessment of 

overall, cumulative risk (i.e., AL) were selected to reflect the activity and functioning of 

major biological regulatory systems known to affect health (Barrett-Connor and others 

1986; Despres and others 1990; Eaton 2005; Forouhi and Sattar 2006; Fried and others 

1998; Landsberg 1994; McEwen 1998; McEwen and Stellar 1993; Munck and Guyre 

1991; Reuben and others 2000; Simon and others 2006; Tsuji and others 1996).   

Seated systolic and diastolic blood pressure were measured as the average of 
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the second and third of three seated blood pressure readings assessed after a 5-minute 

rest period with a Hawksley random zero sphygmomanometer (W.A. Baum Company, 

Copiague, NY, USA).  

Measures of inflammation included C-reactive protein (CRP), interleukin-6 (IL-6) 

and fibrinogen.  CRP and fibrinogen were measured using the BNII nephelometer from 

Dade Behring utilizing a particle enhanced immunonephelometric assay.  The assay 

range for CRP is 0.175 - 1100 mg/L; intra-assay CVs range from 2.3 - 4.4% and inter-

assay CVs range from 2.1 - 5.7%.  Fibrinogen intra-assay and inter-assay CVs were 

2.7% and 2.6% respectively. IL-6 was measured by ultra-sensitive ELISA (R&D 

Systems, Minneapolis, MN), with a detection range of 0.156-10.0 pg/mL and a routine 

CV in the lab of 6.3%.    

Measures of metabolism included waist circumference, and fasting measures of 

high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol, 

triglycerides and glucose and insulin.  Waist circumference was measured as the 

average of two measurements taken to the nearest 0.5 cm at the minimum abdominal 

girth, while participants were standing upright.  Blood samples for total cholesterol, 

HDL-C and LDL-C cholesterol, insulin and glucose assays were drawn in the morning 

after an overnight fast. Blood was drawn into vacuum tubes from participants in the 

seated position and was centrifuged at 4C within 60 min.  Serum and plasma were 

stored in cryovials (containing fluoride for the glucose assay) and then frozen at –70C 

for shipment to the Northwest Lipid Research Laboratories, University of Washington, 

Seattle.  Total cholesterol was determined enzymatically on the Abbot Spectrum, within 

6 weeks of collection (Warnick 1986).  HDL-C was determined by precipitation with 
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dextran sulfate/magnesium chloride (Warnick and others 1982).  LDL-C was calculated 

using the Friedewald equation (Friedewald and others 1972).  Glucose and insulin 

assays were conducted at Linco Research, Inc.  Glucose measurements were 

assessed with a Cobas Mira Plus chemistry analyzer (Roche Diagnostic Systems) using 

the hexokinase ultraviolet method; insulin was measured by radioimmunoassay (RIA) 

using an overnight, equilibrium incubation format (Folsom and others 1996; Haffner and 

others 1994).  

Heart rate variability (HRV) was assessed based on a 10-minute protocol during 

which subjects were asked to sit quietly without moving or talking.  Details regarding the 

protocol have been previously reported (Sloan and others 2005). ECG electrodes were 

placed on the right shoulder, on the left anterior axillary line at the 10th intercostal space 

and in the right lower quadrant. The analog ECG signal was digitized at 500 Hz during a 

10-min quiet, seated resting period. The ECG waveform was submitted to a specially 

written R-wave detection routine, resulting in a time series of RR intervals. Errors in 

marking of R-waves were corrected interactively. Spectral analysis to compute RR 

variability (RRV) was conducted on 5-min epochs using an interval method for 

computing Fourier transforms (DeBoer and others 1984). Power, i.e., variance (in 

msec2), over the low (0.04-0.15 Hz (LF)) and high (0.15-0.50 Hz (HF)) frequency bands 

was summed. Mean heart rate (HR) was computed for all subjects.  

Integrated measurements of SNS activity were obtained from assays for 

norepinephrine (NOR) and epinephrine (EPI) from 12-hr over-night urine samples 

preserved with sodium metabisulfite.  Aliquots to be assayed for NOR and EPI were 

acidified to pH of 3 or less and frozen at –80C until assayed.  Samples were analyzed 
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by HPLC with electrochemical detection (Macdonald and Lake 1985)  and creatinine by 

the method of Baranowski and Westenfelder (Baranowski and Westenfelder 1986). The 

sensitivity of the assay as prepared was 1.0 ng/ml.  The intra- and inter-assay CVs for 

NOR were 3.0% and 4.1% respectively; comparable statistics for EPI were 4.8% and 

7.1%.   

Diurnal cortisol activity was assessed based on a series of six saliva samples 

collected at wakening (“when your eyes open and you are ready to get up”), 45 minutes 

later, 1hr 45 min after that (i.e., 2.5 hrs after wakening), +5.5hrs (i.e., 8 hrs after 

wakening), +4 hrs (i.e., 12 hrs after wakening), and at bedtime (“right before getting into 

bed”).  Participants were given 6 Salivettes (i.e., a small cotton roll in a plastic tube; 

Sarstedt, Rommelsdorft, Germany) at the conclusion of their Year 15 CARDIA clinic 

visit.  Participants collected samples on a single weekday, recording the time they woke 

up and (on the tube label) the time each sample was collected.  Participants returned 

the Salivettes to the clinic the following morning. Salivettes were stored frozen at each 

site until they were assayed by time-resolved immunoassay with fluorometric end point 

detection (Dressendorfer and others 1992).  Nine samples with levels below the 

minimum detectable level (0.7 nmol/l) for this assay were assigned values of 0.5 nmol/l.  

Intra- and inter-assay variabilities were each less than 12%.  

Two summary measures were developed and included in the current analyses to 

reflect diurnal rhythm: 1) Morning Rise – the difference between the wake-up sample 

and the sample collected 45 minutes later (after transforming both to logarithms; 

equivalent to the log of the ratio of the two samples) and 2) Diurnal slope – The slope of 

the decline of cortisol across the day was derived from a multilevel growth curve model 



13 

(Adam and others 2006), treating the slope (of time elapsed since wake-up) and 

intercept as random coefficients.  The second cortisol sample (+ 45 min after wake-up) 

was used as the starting point for estimation of slopes, thereby defining the slope as the 

average hourly rate of decline, following the morning rise, in logged cortisol. The 

empirical Bayes' best linear unbiased predictors (EBLUP) of the subject-specific slopes, 

derived from the multi-level model, were used in the analysis.  Data were excluded for 

individuals who woke-up after twelve noon or whose timing of sample collections 

deviated by more than 15-30 minutes for first 2 samples (i.e., those measuring morning 

rise) and by more than 30-60 minutes for the subsequent 4 samples (i.e., those 

measuring afternoon decline and bedtime nadir). 

Age. Sex and Ethnicity:  At the time of this sub-study (i.e., CARDIA Year 15 exam), 

ages of participants could range from 32-49.  As indicated previously, based on  the 

original CARDIA sampling design, there are approximately equal numbers of Black and 

White men and women in the sample ( White Females = 1031, Black Females = 1021; 

White Males = 911; Black Males = 709).  

Analyses:  Structural equation modelling (SEM) analyses was employed to estimate 

alternative models of the “structure” of AL and to test for factorial invariance of the final 

structural model across gender and ethnicity.  SEM is a technique used to assess the 

“plausibility” of hypothesized-models of interrelationships among variables (Hu and 

Bentler 1999).  With SEM, one can test whether an a priori hypothesized model fits 

observed sample data by comparing the estimated population covariance matrix of the 

hypothesized model to that of the observed sample data covariance matrix.  
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A first set of analyses examined the relative fit of three a priori models 

representing the inter-relationships among the biological measures and systems for 

which we had data.  These analyses were designed to test the hypothesis that AL can 

be represented by a higher-order meta-construct reflecting dysregulation across 

multiple biological systems (modelled as sub-factors).  The available biological data 

were hypothesized to represent six “latent” sub-factors (or domains) representing heart 

rate variability, blood pressure, inflammation, metabolism, sympathetic nervous system 

and hypothalamic-pituitary-adrenal axis activity.  These six sub-factors were in turn 

hypothesized to represent various aspects or components of a meta “allostatic load” 

factor.  The fit of this hypothesized AL meta-factor model was tested against two 

alternative models.  One alternative was a “one-factor” model where all the biological 

variables were hypothesized to be indicators of a single “latent” AL factor (i.e., removing 

specification of separate biological subsystems).  The second alternative was a 

correlated “6-factor” model in which the individual biological measures were 

hypothesized to reflect the same six underlying biological factors represented in the 

meta-factor model but relationships among these factors were represented by a series 

of paired correlations rather than through a meta “allostatic load” factor.  The “one-

factor” model is nested within the meta-factor model, and the latter, in turn, is nested 

within the “6-factor” model.  While a nested model is more parsimonious than the less 

constrained model in which it is nested, it will also necessarily provide a poorer fit.  The 

central question was how much better does the meta-factor model, reflecting a higher 

order constellation of shared biological dysregulations across our six sub-factors, fit 
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when compared to the one-factor model, and how well does it capture the majority of 

the information contained in the less structured/constrained “6-factor” model.  

To assess the relative fit of the “6-factor” and “meta factor” models, each was 

compared to a “null” model wherein the 6 factors were modelled as independent 

entities, unrelated to one another.  While the latter model was not expected to fit well 

(since it cannot reflect the known relationships among these biological systems), it 

provides a standard against which to compare the relative improvements in fit achieved 

by the “meta-factor” versus the “6-factor” model. 

The SEM literature has proposed an array of statistics for assessing whether a 

hypothesized model adequately “fits” one’s empirical data.  For analyses testing model 

fit, we report the chi-square (Χ2) test statistic, the chi-square to degrees of freedom 

(Χ2/df) ratio, the comparative fit index (CFI), and the root mean square error of 

approximation (RMSEA).  The Χ2 statistic is used to assess the extent to which the 

deviations between the model-implied covariance matrix and the observed covariance 

matrix exceeds chance expectation.  However, Χ2 values are sensitive to sample size 

and even small deviations between model-implied and observed covariance matrices 

can lead to a large and statistically significant Χ2 value.  The Χ2/df ratio is an additional 

statistic that proves useful in such situations.  Χ2/df values less than 3.0 are desirable 

(Kline 1998).  The CFI is an incremental fit index assessing improvement in fit of a 

hypothesized model compared to a restricted, nested baseline model (one in which all 

observed values are uncorrelated) (Bentler 1990; Hu and Bentler 1999).  Values of .90 

or greater are desired.  RMSEA is an absolute fit index, which assesses the fit of a 

hypothesized model to observed sample data, with low values (< .06) desired, as this 
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value represents the average discrepancy between the model-implied and observed 

covariance matrices.  For comparisons of nested models, Χ2 difference tests were used 

to assess whether the change in model fit was statistically significant.  Lagrange 

multiplier (LM) test statistics were examined to identify specific model parameters that 

when added to the model might improve model fit (e.g., the addition of a path between 

two model variables), including model parameters that should be freed from cross-group 

equality constraints (e.g., those parameters that would improve model fit if added to or 

“estimated freely” in the model; see below for description of multiple group analyses).  

After evaluating the relative fit of our “meta-factor” model of AL, we tested the factorial 

invariance of this model across four groups defined jointly by gender and ethnicity (i.e., 

White men and women and Black men and women).   

Prior to model testing, each biological parameter was assessed for univariate 

normality and log transformations were made for glucose, insulin, triglycerides, CRP, IL-

6, high and low frequency power, epinephrine, norepinephrine, and salivary cortisol 

measures.  Despite improvements in univariate normality of biological parameters, 

computation of Mardia’s coefficient (e.g., Mardia’s = 35.10) in analyses using the EQS 

software indicated that the data displayed substantial multivariate non-normality.  Thus, 

we used Satorra-Bentler Scaled Chi-Square statistics that are robust to violations of 

non-normality.  And, for analyses assessing factorial invariance of the structure of AL 

across gender, ethnicity, and gender/ethnic groupings, chi-square difference tests 

correcting for the use of robust statistics (Satorra and Bentler 2001)  were employed 

when comparing nested models.  Also, since complete data were not available for all 

biological parameters, SEM analyses using EQS were computed using a complete data 
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set produced from the maximum likelihood imputation method available within EQS 

(Jamshidian-Bentler EM algorithm) (Jamshidian and Bentler 1999). Analyses using 

listwise and pairwise estimation methods produced similar results to those reported 

here.  All analyses were run using the EQS v6.1 software. 

 

RESULTS 

 The mean age for the sample was 40 (range = 32-47; see Table 1).  Reflecting 

the original CARDIA study design, gender and ethnicity exhibit approximately equal 

splits (57.9% female; 45.3% White).  The lower portion of Table 1 provides descriptive 

statistics for each of the 18 biological parameters used to model AL.  

INSERT TABLE 1 

Testing of the single-factor AL model revealed the expected poor fit to the data 

(Χ2 (135) = 2349.44, Χ2/df = 17.40, CFI = .45, RMSEA = .15, Model AIC = 2079.44).  

Factor loadings for individual biological indicators are presented in Figure 1a.   

INSERT FIGURE 1a 

The correlated six-factor model provided a much better fit to the data (Χ2 (120) = 

568.89, Χ2/df = 4.7, CFI = .89, RMSEA = .07, Model AIC = 328.89).  As shown in Figure 

1b, with the exception of the measure of AM rise in salivary cortisol, all of the biological 

indicators loaded significantly on their respective “latent” factors.  The pattern of 

correlations among the 6 factors was consistent with known associations among the 

various regulatory systems represented by these factors.  The strongest correlations 

were those between metabolism and inflammation (0.70) and between metabolism and 
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blood pressure (0.42); next in strength were those of inflammation with blood pressure 

(0.33) and HRV (-0.36).          

INSERT FIGURE 1b 

As shown in Figure 1c, the hypothesized meta-factor AL model also provided a 

much better fit to the data than the one-factor AL model, albeit a significantly poorer fit 

than the correlated 6-factor model (Χ 2 (130) = 656.09, Χ 2/df = 5.0, CFI = .87, RMSEA = 

.07, Model AIC = 396.1).  As shown in Table 2, comparison of the improvements in fit of 

the meta-factor and 6-factor models relative to the “null” model - which hypothesized no 

relationships among the 6 factors - indicated that the improvement in fit associated with 

the meta-factor model (Χ 2 difference relative to the “null” model = 471.65) represented 

84% of that achieved by the less parsimonious “correlated 6-factor” model (Χ 2 

difference relative to the “null” model = 558.85).  

INSERT FIGURE 1c and Table 2 

A closer examination of the meta-factor model itself indicated that several 

modifications could be made to improve the fit.   First, since the factor loading for 

norepinephrine on the hormone factor was 1.0 and analyses indicated that the removal 

of epinephrine did not alter the path estimate between the AL meta-factor and the single 

measure of norepinephrine, the hormone factor was replaced with the single measured 

norepinephrine variable (Χ2 (114) = 551.62, Χ2/df = 4.8, CFI = .88, RMSEA = .07, Model 

AIC = 323.62).  In addition, LM tests indicated that the addition of a parameter 

representing the covariance between the residual errors for HDL-C and triglycerides 

would lead to a very substantial improvement in the fit of this model (Χ2 (113) = 459.08, 
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Χ2/df = 4.1, CFI = .91, RMSEA = .06, Model AIC = 233.08).  Figure 2 presents this final 

“refined” model.  

INSERT FIGURE 2 

Examination of the loadings for the various sub-factors on the AL meta-factor 

(range = .19 - .89) suggests that, in this relatively young population of Whites and 

Blacks, the core domains of the AL meta-factor are inflammation and metabolism. 

Loadings for each of the remaining systems are approximately 50% smaller, though still 

statistically significant and of moderate size.  Examination of the individual sub-factors 

indicated that higher loadings on the HPA/salivary cortisol factor reflected those with a 

flatter diurnal rhythm while higher loadings on the metabolic factor reflected those with 

greater metabolic risk profiles (through positive contributions from all components 

except HDL-C).  Likewise, higher scores on the inflammation and BP factors, 

respectively, reflected those with more elevated levels of the three markers of 

inflammation and/or higher blood pressure.  Higher loadings on the HRV factor reflect 

both higher HF and LF and lower HR – a pattern previously associated with lower CVD 

risk (5, 42).  As expected, sub-factor profiles, reflecting poorer patterns of blood 

pressure, inflammation, metabolic, and hormonal functioning (i.e., flatter diurnal rhythm 

of salivary cortisol; higher levels of SNS activity), load positively on the AL meta-factor 

while the HRV factor (reflecting better HRV) loads negatively on the meta-factor. 

Factorial invariance across gender/ethnic groups.  The CARDIA sampling design, 

with similar numbers of Black and White men and women, also allows for examination 

of possible gender-by-ethnicity variability in these models.  A model in which all factor 
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loadings and the correlation between the residual errors of HDL-C and triglycerides of 

the AL meta-factor model were constrained to be equal across the four gender/ethnic 

groups produced a significantly worse chi-square fit statistic (Χ2 (506) = 829. 92, p = 

<.0001) as compared to a multi-group model in which no equality constraints were 

imposed (Χ2 (455) = 712.78, p = <.0001, Χ2 difference (51) = 114.09, p=<.0001).1  

Examination of LM statistics for the improvement in fit provided by relaxing specific 

equality constraints indicated that a model in which the equality constraint for the 

norepinephrine factor loading on the AL factor was removed for white females, and the 

equality constraints for the inflammation factor loading on the AL meta-factor, as well as 

for the triglycerides, glucose, and waist circumference loadings on the metabolic factor 

and the association between errors for HDL and triglycerides  were removed for white 

males would produce a model for which the chi-square fit statistic (modified model Χ2 

(503) = 768.66, p = <.0001) was not significantly different from that of the unconstrained 

baseline model (Χ2 difference (48) = 56.26, p=.19).2   Table 3 presents standardized 

factor loadings for the final model, with standardized values estimated based on pooled 

standard deviations across the four groups.  Parameter estimates that were allowed to 

vary for a specific race/gender group are noted in parentheses.  The only differences 

were for the metabolic factor where white men had significantly higher loadings for 3 of 

the 5 metabolic parameters – triglycerides, glucose, and waist circumference – and a 

stronger association between the residual errors of HDL and triglycerides, as well as for 

the inflammation factor loading on the AL factor, where white men had a lower value 

compared to the other groups.  White women also had a lower and non-significant 



21 

loading on the norepinephrine/SNS path on the AL factor. With these few exceptions, all 

other loadings were similar across the four sex-ethnic groups.  

In supplementary analyses we modelled mean levels of the AL meta-factor as 

well as mean levels of the 5 five AL subfactors.  As shown on the far left in Figure 3, the 

lowest mean AL levels were seen in white females, followed by white males, then black 

males, with black females having the highest mean levels.  Means for each group varied 

significantly from the others.  Mean levels for the 5 subfactors are shown in the right-

hand section of Figure 3.  For the salivary cortisol subfactor, all groups were 

significantly different from each other except white males and black males.  For the 

inflammation subfactor, all groups were significantly different from each other except 

white females and white males. For the metabolic subfactor, all groups were 

significantly different from each other except white males and black males.  For the 

heart rate variability subfactor, black females were significantly different from white 

males.  For the blood pressure subfactor, all groups were significantly different from 

each other except black females and black males.  No single pattern of group 

differences emerged across the five subfactors.  Whites had lower mean scores for all 

but the metabolic and heart rate variability subfactors where patterns reflected more 

male/female differences with relative male disadvantage with respect to metabolism but 

relative advantage with respect to heart rate variability.  Consistent with the findings for 

total AL, white females generally have a more favourable profile of mean scores across 

the physiological subfactors.  

INSERT TABLE 3 & Figure 3  
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DISCUSSION 

Analyses presented here provide preliminary support for a hypothesized “meta-

factor” model of allostatic load wherein the individual biomarkers load on a set of “latent” 

subfactors/domains, representing aspects of overall physiological integrity (i.e. HRV, 

BP, inflammation, metabolism, SNS and HPA axis), and the sub-factors in turn load on 

a meta-AL factor that reflects their shared variance (i.e., their constellation of shared, 

inter-relationships).  While this model did not fit the data as well as the fully 

parameterised “6 factor” model representing all possible pairwise relationships among 

the 6 sub-factors, it did capture over 84% of the pattern of associations among the 

latter, suggesting that there is, indeed, a core of common or shared variance among 

these various biological factors.   

In the current analyses of a relatively young population, all six domains were 

significantly related to the AL meta-factor, with metabolic and inflammation subfactors 

exhibiting the highest loadings.  This is consistent with the observation that the 

correlation between the metabolic and inflammation subfactors, in the 6-factor model, 

was substantially greater than the other pairwise correlations.  Future analyses of other 

samples, including those with a wider age range, should examine whether this pattern 

prevails in other age groups and for more comprehensive assessments of the various 

systems.  

Overall, fit indices indicated that the six-factor and AL meta-factor models provided 

an adequate fit to the data (e.g., CFI values range from .87 - .91, RMSEA values from 

.06 - .07).  Reasons for the lack of better fitting models may include the range of 

methodologies reflected in the data (i.e., measurements in blood, urine and saliva) as 
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well as our inability to obtain an exhaustive battery of measures to represent each 

biological system in the context of this population-based study.  We also explored only a 

limited number of model modifications to improve model fit, being more concerned with 

comparing the relative fit of our hypothesized models of allostatic load to gain a better 

understanding of associations between various biological regulatory systems, than with 

obtaining a more perfect-fitting model that may be less generalizable to other samples. 

Analyses testing for possible differences in the structure of AL across the four 

race/gender groups available in CARDIA yielded evidence indicating a high degree of 

invariance with few significant differences in loadings for either individual biomarkers or 

the system-specific sub-factors.  Though these population subgroups are known to 

experience differential health risks (e.g., higher mortality among men and among 

Blacks), such invariance in how system-specific measures relate to one another 

(reflected in our system-specific parameter loadings) and in how systems relate to one 

another (reflected in our system-level loadings on the AL factor) is perhaps not so 

surprising to the extent that our models are capturing inherent intra- and inter-system 

commonalities in how the human body’s regulatory systems operate.  Where we do see 

evidence for significant difference by sex and/or ethnicity (i.e., white men had 

significantly higher loadings for triglycerides, glucose, and waist circumference on the 

metabolic factor and a lower loading for the inflammation factor on the allostatic load 

meta-factor), the patterning is consistent with other evidence pointing to greater 

contributions to overall AL levels from dysregulations in these same systems from 

studies of White and Asian men (Goldman and others 2004; Karlamangla and others 

2005). Further work is needed to determine whether the lack of similar evidence in the 
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Black men in CARDIA reflects a true difference among Black men in the general 

population with respect to these parameters or whether the lack of similar findings in the 

current analyses reflects unique characteristics of the sample of Black men participating 

in this study.   Evidence that white women had a lower and non-significant loading for 

norepinephrine on the allostatic load factor is consistent with evidence suggesting that 

women may tend to be less “reactive” with respect to stress responsive systems such 

as the sympathetic nervous system (Seeman and McEwen 1996; Taylor and others 

2000). The apparent disadvantage for Black women in this case may reflect their 

generally lower socio-economic status which has been shown to predict greater 

accumulation of AL (Geronimus and others 2006; Seeman and others 2008; Seeman 

and others 2004).  More generally, and not unexpectedly, as the mean levels for the 

subfactors indicate, Blacks were found to exhibit relative disadvantage with respect to 

all factors except heart rate variability and metabolism.  These findings parallel work by 

Geronimus and others (2006) for the nationally-representative National Health and 

Nutrition Survey (NHANES) III where Blacks had significantly higher levels of overall AL.  

These differences were not explained by poverty and, notably, the poor and non-poor 

Black women had the highest and second highest AL burdens. Thus, our findings and 

those of Geronimus and others (2006) suggest that Blacks in general, and Black women 

in particular, may be at highest risk for development of AL.  

A strength of these analyses is the range of biomarkers available for modelling 

allostatic load; while not exhaustive, it was considerably broader than is frequently 

available in such community-based research.  Biomarkers provided information on six 

major components of physiological regulation (HRV, blood pressure, inflammation, 
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metabolism, SNS, and HPA axis activity), allowing for estimation of the relationship of 

each of these systems to an overall allostatic load construct within the CARDIA cohort.  

Using SEM, the relative fit of the proposed meta-factor AL model was compared with 

that of a non-specific model of pairwise relationships among the six factors represented 

in the available data.  The sampling design of the CARDIA study also permitted a more 

complete evaluation of possible gender and ethnic differences in the structure of AL 

than has been possible in previous research.    

There are also limitations to the available data.  The data are cross-sectional, 

making it impossible to assess whether currently observed levels of AL reflect a 

cumulative process of increasing biological dysregulation over time.  Available data are 

also more limited with respect to the range of parameters within some of the systems 

(e.g., there are more parameters measured for the metabolic and inflammation 

domains), resulting in potential differences in the comprehensiveness of assessment 

across these domains.  Measures are also limited to static, single point in time 

assessments rather than measures of the dynamics of these various biological systems.  

The sole exception - the measurement of diurnal cortisol rhythm over the course of a 

day – is itself limited to only one day rather than the recommended multiple day 

protocol.  The demographic characteristics of the CARDIA cohort also limit our ability to 

generalize these findings beyond the age range and major ethnic groups represented 

here (Whites and African Americans).    

 

CONCLUSION 
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Despite these limitations, the current analyses extend previous research on allostatic 

load in important ways.  First, structural equation modeling provides evidence, 

consistent with the original conceptualization of AL as a multi-systems index of 

cumulative dysregulation, that a meta-factor model reflecting a common core of inter-

relationships among multiple systems provides a reasonable fit to the data.  As 

demonstrated in the current analyses, each of the six factors or systems represented in 

the CARDIA data is related to the AL meta-factor.  Second, the analyses provide the 

first test of the factorial invariance of these relationships across both gender and 

ethnicity, revealing little evidence that the structure of these relationships differs across 

such central demographic characteristics.  Clearly, these analyses require further 

replication and extension, but such a meta-factor model of AL may be a particularly 

useful tool in efforts to assess the multiple physiological pathways through which factors 

such as socio-economic status or exposure to chronic stress impact health (i.e., taking a 

more global, multi-systems perspective on physiological parameters).  Such an 

approach does not negate the value or necessity of efforts to understand the links 

between such factors and individual biological systems.  However, by modeling the 

shared variance among these various biological systems, a meta-factor AL approach 

offers a way of conceptualizing and testing for more cumulative or simultaneous effects 

of such factors on not one system but on an array of multiple systems.  
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1 The disturbance (error) terms for the metabolic subfactor had to be set = 0 in white 

males and white females, and the error term for systolic blood pressure (SBP) had to be 

set = 0 in black males in the baseline multigroup model to eliminate error messages that 

the values for these parameters were outside lower bound settings.  In the subsequent 

model in which factor loading equality constraints were imposed, we were able to 

release these restrictions on the error terms.  Note that a modified chi-square difference 

test correcting for the use of robust chi-square test statistics was used, thus the chi-

square difference value is not the simple difference between the two model chi-squares 

under comparison. 

2 The disturbance term for the metabolic factor had to be set = 0 in white males and 

white females and the error term for SBP had to be set = 0 in black males in the final 

multigroup model to eliminate error messages that the values for these parameters 

were outside lower bound settings.  Note also that a modified chi-square difference test 

correcting for the use of robust chi-square test statistics was used, thus the chi-square 

difference value is not the simple difference between compared model chi-squares.  In 

addition, a second set of multigroup models in which the variance of each of the five 

subfactors was fixed to a different measured variable were run to ensure that none of 

the factor loadings for measured variables used to fix factor variances in the first round 

of analyses differed across the groups.  This second round of analyses indicated that 

releasing the same equality constraints as were indicated in the first set of analyses 

would lead to a final model which was not significantly different from the baseline model 

in which no equality constraints were imposed.   
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Table 1. Descriptive Statistics 
 
 N Mean (sd) or 

% 
Variance-

Transformed  
Mean (sd) 

Imputed  
Mean (sd) 

Age 782 40 (3.6)   
Gender     
    Female (%) 453 57.9   
    Male (%) 329 42.1   
Race     
    White (%) 354 45.3   
    Black (%) 428 54.7   
     
Heart Rate (ln bpm) 721 72.6(11.7) 22.7 (3.6) 22.7 (3.5) 
Low Freq. Power (ln ms2) 721 6.1 (1.1) 19.6 (3.6) 19.6 (3.5) 
High Freq. Power (ln ms2) 721 5.9 (1.3) 18.8 (4.2) 18.8 (4.0) 
Systolic BP (ln mmHg) 782 113.7 (14.3) 35.5 (4.5) 35.5 (4.5) 
Diastolic BP (ln mmHg) 782 75.4 (10.7) 23.6 (3.3) 23.6 (3.3) 
Triglycerides (ln mg/dL) 768 4.5 (0.6) 28.1 (3.5) 28.1 (3.5) 
HDL-C (ln mg/dL) 768 50.3 (13.7) 15.7 (4.3) 15.7 (4.3) 
LDL-C (ln mg/dL) 762 113.5 (32.3) 11.4 (3.2) 11.4 (3.2) 
Waist Girth (ln cm) 779 89.8 (15.7) 28.1 (4.9) 28.1 (4.9) 
Fasting Glucose (ln mg/dL) 768 4.4 (0.2) 88.7 (3.2) 88.7 (3.2) 
Fasting Insulin (ln uU/mL) 766 2.5 (0.6) 15.8 (3.5) 15.8 (3.5) 
Fibrinogen (ln mg/dL) 708 339.3 (79.2) 13.6 (3.2) 13.6 (3.1) 
CRP (ln uG/mL) 760 1.1 (0.8) 4.6 (3.2) 4.6 (3.2) 
IL-6 (ln pg/mL) 705 0.9 (0.4) 7.5 (3.5) 7.6 (3.4) 
Norepinephrine  
(ln ug/g creatine) 

725 3.4 (0.6) 21.3 (3.6) 21.3 (3.4) 

Epinephrine  
(ln ug/g creatine) 

681 1.5 (0.6) 9.2 (3.6) 9.3 (3.4) 

AM rise – Salivary Cort.  
(ln nmol/L) 

696 0.3 (0.6) 1.5 (3.4) 1.5 (3.2) 

PM decline – Salivary Cort.  
(ln cort (nmol/L)/hour) 

743 -0.03 (0.03) -3.2 (3.6) -3.1 (3.5) 
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Table 2.  Relative model fit statistics 
 
Model Fit Statistics “Null” Model 

(6-factor 
uncorrelated) 

6-Factor Model 
(Correlated) 

Meta-Factor 
Model 

CFI .75 .89 .87 
X2 1127.74 568.89 656.09 
Df 135 120 130 
X2/df 8.4 4.7 5.0 
AIC 857.74 328.9 396.1 
Difference in model X2 (from that of the Null 
Model) 

558.85 471.65 
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Table 3.  Standardized Factor Loadings for Final Multigroup Meta-Factor Model  
 Standardized Factor Loading 
HRV Factor  
   Heart rate -.72 
   LF .79 
   HF .91 
  
Blood Pressure Factor  
   SBP .93 
   DBP .82 
  
Inflammation Factor  
   Fibrinogen .55 
   CRP .72 
   IL-6 .80 
  
Metabolic Factor  
   Waist .91 (.66 – White Males) 
   HDL-C -.43 
   LDL-C .27 
   Triglycerides .38 (.71 – White Males) 
   Glucose .34 (.86 – White Males) 
   Insulin .71 
  
Salivary Cortisol Factor  
   AM Rise -.40 
   PM Decline .47 
  
Allostatic Load Meta-Factor (subscale loadings)  
   HRV -.33 
   BP .39 
   Inflammation .91 (.66 – White Males) 
   Metabolic .92 
   Norepinephrine .23 (.02 – White Females) 
   Salivary Cortisol – PM Decline .23 
  
HDL-C/Triglyceride residual corr. -.28 (-.51 - White Males) 
Note.  Values noted in parentheses reflect parameter estimates that were allowed to 

vary for the specific group noted. 
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Figure Captions 

Figure 1a.  Results for final one-factor allostatic load model (model fit statistics: Χ2 (135) 

= 2349.44 Χ2/df = 17.40, CFI = .45, RMSEA = .15, Model AIC = 2079.44).  All parameter 

estimates are standardized and significant (p < .05) except for path estimate for 

epinephrine (EPI).  Estimates for error terms are not depicted.   

Figure 1b. Results for “correlated 6 factor” allostatic load model (model fit statistics: Χ2 

(120) = 568.89, Χ2/df = 4.7, CFI = .89, RMSEA = .07, Model AIC = 328.89).  All 

parameter estimates are standardized and significant (p < .05) except for path estimate 

for AM rise, and correlations between blood pressure and hormone factors, metabolic 

and hormone factors, HRV and salivary cortisol factors, and metabolic and salivary 

cortisol factors.  Estimates for error terms are not depicted.   

Figure 1c. Results for meta-factor allostatic load model including epinephrine (model fit 

statistics: Χ2 (130) = 656.09, Χ2/df = 5.0, CFI = .87, RMSEA = .07, Model AIC = 396).  

All parameter estimates are standardized and significant (p < .05).  Estimates for error 

terms are not depicted. 

Figure 2.  Results for final meta-factor allostatic load model (model fit statistics: Χ2 (113) 

= 459.08, Χ2/df = 4.1, CFI = .91, RMSEA = .06, Model AIC = 233.08).  All parameter 

estimates are standardized and significant (p < .05).  Estimates for error terms and the 

correlation between error terms for HDL-C and triglycerides (r = -.36) are not depicted.  

Figure 3. Estimated Allostatic Load & Sub-factor Mean Scores for White & Black Men 

and Women 
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Figure 1a.  Results for final one-factor allostatic load model (model fit statistics: Χ2 (135) 

= 2349.44, Χ2/df = 17.40, CFI = .45, RMSEA = .15, Model AIC = 2079.44).  All 

parameter estimates are standardized and significant (p < .05) except for path estimate 

for epinephrine (EPI).  Estimates for error terms are not depicted.   
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Figure 1b. Results for “correlated 6 factor” allostatic load model (model fit statistics: Χ2 

(120) = 568.89, Χ2/df = 4.7, CFI = .89, RMSEA = .07, Model AIC = 328.89).  All 

parameter estimates are standardized and significant (p < .05) except for path estimate 

for AM rise, and correlations between blood pressure and hormone factors, metabolic 

and hormone factors, HRV and salivary cortisol factors, and metabolic and salivary 

cortisol factors.  Estimates for error terms are not depicted.   
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7 

Figure 1c.  Results for meta-factor allostatic load model including epinephrine (model fit 

statistics: Χ2 (130) = 656.09, Χ2/df = 5.0, CFI = .87, RMSEA = .07, Model AIC = 396).  

All parameter estimates are standardized and significant (p < .05).  Estimates for error 

terms are not depicted. 
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Figure 2.  Results for final meta-factor allostatic load model (model fit statistics: Χ2 (113) 

= 459.08, Χ2/df = 4.1, CFI = .91, RMSEA = .06, Model AIC = 233.08).  All parameter 

estimates are standardized and significant (p < .05).  Estimates for error terms and the 

correlation between error terms for HDL-C and triglycerides (r = -.36) not depicted.  
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Figure 3. Estimated Allostatic Load & Sub-factor Mean Scores for White & Black Men and Women 
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